Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Heliyon ; 7(8): e07743, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: covidwho-1531289

RESUMEN

PURPOSE: To compare the diagnostic performance and interobserver agreement of three reporting systems for computed tomography findings in coronavirus disease 2019 (COVID-19), namely the COVID-19 Reporting and Data System (CO-RADS), COVID-19 Imaging Reporting and Data System (COVID-RADS), and Radiological Society of North America (RSNA) expert consensus statement, in a low COVID-19 prevalence area. METHOD: This institutional review board approval single-institutional retrospective study included 154 hospitalized patients between April 1 and May 21, 2020; 26 (16.9 %; 63.2 ± 14.1 years, 21 men) and 128 (65.7 ± 16.4 years, 87 men) patients were diagnosed with and without COVID-19 according to reverse transcription-polymerase chain reaction results, respectively. Written informed consent was waived due to the retrospective nature of the study. Six radiologists independently classified chest computed tomography images according to each reporting system. The area under receiver operating characteristic curves, sensitivity, specificity, positive predictive value, negative predictive value, accuracy, and interobserver agreements were calculated and compared across the systems using paired t-test and kappa analysis. RESULTS: Mean area under receiver operating characteristic curves were as follows: CO-RADS, 0.89 (95 % confidence interval [CI], 0.87-0.90); COVID-RADS, 0.78 (0.75-0.80); and RSNA expert consensus statement, 0.88 (0.86-0.90). Average kappa values across observers were 0.52 (95 % CI: 0.45-0.60), 0.51 (0.41-0.61), and 0.57 (0.49-0.64) for CO-RADS, COVID-RADS, and RSNA expert consensus statement, respectively. Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were the highest at 0.71, 0.53, 0.72, 0.96, and 0.56 in the CO-RADS; 0.56, 0.31, 0.54, 0.95, and 0.35 in the COVID-RADS; 0.83, 0.49, 0.61, 0.96, and 0.55 in the RSNA expert consensus statement, respectively. CONCLUSIONS: The CO-RADS exhibited the highest specificity, positive predictive value, which are especially important in a low-prevalence population, while maintaining high accuracy and negative predictive value, demonstrating the best performance in a low-prevalence population.

2.
Insights Imaging ; 12(1): 155, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1496216

RESUMEN

Coronavirus disease 2019 (COVID-19) pandemic has posed a major public health crisis all over the world. The role of chest imaging, especially computed tomography (CT), has evolved during the pandemic paralleling the accumulation of scientific evidence. In the early stage of the pandemic, the performance of chest imaging for COVID-19 has widely been debated especially in the context of comparison to real-time reverse transcription polymerase chain reaction. Current evidence is against the use of chest imaging for routine screening of COVID-19 contrary to the initial expectations. It still has an integral role to play, however, in its work up and staging, especially when assessing complications or disease progression. Chest CT is gold standard imaging modality for COVID-19 pneumonia; in some situations, chest X-ray or ultrasound may be an effective alternative. The most important role of radiologists in this context is to be able to identify those patients at greatest risk of imminent clinical decompensation by learning to stratify cases of COVID-19 on the basis of radiologic imaging in the most efficient and timely fashion possible. The present availability of multiple and more refined CT grading systems and classification is now making this task easier and thereby contributing to the recent improvements achieved in COVID-19 treatment and outcomes. In this article, evidence of chest imaging regarding diagnosis, management and monitoring of COVID-19 will be chronologically reviewed.

3.
Respir Investig ; 59(4): 446-453, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: covidwho-1157708

RESUMEN

BACKGROUND: Distinguishing coronavirus disease 2019 (COVID-19) pneumonia from other lung diseases is often difficult, especially in a highly comorbid patient population in a low prevalence region. We aimed to distinguish clinical data and computed tomography (CT) images between COVID-19 and other lung diseases in an advanced care hospital. METHODS: We assessed clinical characteristics, laboratory data, and chest CT images of patients with COVID-19 and non-COVID-19 patients who were suspected of having COVID-19 between February 20 and May 21, 2020, at the University of Tokyo Hospital. RESULTS: Typical appearance for COVID-19 on CT images were found in 24 of 29 COVID-19 cases and 21 of 168 non-COVID-19 cases, according to the Radiological Society of North America Expert Consensus Statement (for predicting COVID-19, sensitivity 0.828, specificity 0.875, positive predictive value 0.533, negative predictive value 0.967). When we focused on cases with typical CT images, loss of taste or smell, and close contact with COVID-19 patients were exclusive characteristics for the COVID-19 cases. Among laboratory data, high fibrinogen (P < 0.01) and low white blood cell count (P < 0.01) were good predictors for COVID-19 with typical CT images in multivariate analysis. CONCLUSIONS: In a relatively low prevalence region, CT screening has high sensitivity to COVID-19 in patients with suspected symptoms. When chest CT findings are typical for COVID-19, close contact, loss of taste or smell, lower white blood cell count, and higher fibrinogen are good predictors for COVID-19.


Asunto(s)
COVID-19/diagnóstico , Tomografía Computarizada por Rayos X , Biomarcadores/sangre , COVID-19/complicaciones , COVID-19/diagnóstico por imagen , COVID-19/epidemiología , Diagnóstico Diferencial , Femenino , Fibrinógeno , Humanos , Japón/epidemiología , Recuento de Leucocitos , Masculino , Trastornos del Olfato/etiología , Valor Predictivo de las Pruebas , Prevalencia , Trastornos del Gusto/etiología
4.
Radiol Cardiothorac Imaging ; 2(6): e200492, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1156015

RESUMEN

PURPOSE: To compare the performance and interobserver agreement of the COVID-19 Reporting and Data System (CO-RADS), the COVID-19 imaging reporting and data system (COVID-RADS), the RSNA expert consensus statement, and the British Society of Thoracic Imaging (BSTI) guidance statement. MATERIALS AND METHODS: In this case-control study, total of 100 symptomatic patients suspected of having COVID-19 were included: 50 patients with COVID-19 (59±17 years, 38 men) and 50 patients without COVID-19 (65±24 years, 30 men). Eight radiologists independently scored chest CT images of the cohort according to each reporting system. The area under the receiver operating characteristic curves (AUC) and interobserver agreements were calculated and statistically compared across the systems. RESULTS: A total of 800 observations were made for each system. The level of suspicion of COVID-19 correlated with the RT-PCR positive rate except for the "negative for pneumonia" classifications in all the systems (Spearman's coefficient: ρ=1.0, P=<.001 for all the systems). Average AUCs were as follows: CO-RADS, 0.84 (95% confidence interval, 0.83-0.85): COVID-RADS, 0.80 (0.78-0.81): the RSNA statement, 0.81 (0.79-0.82): and the BSTI statement, 0.84 (0.812-0.86). Average Cohen's kappa across observers was 0.62 (95% confidence interval, 0.58-0.66), 0.63 (0.58-0.68), 0.63 (0.57-0.69), and 0.61 (0.58-0.64) for CO-RADS, COVID-RADS, the RSNA statement and the BSTI statement, respectively. CO-RADS and the BSTI statement outperformed COVID-RADS and the RSNA statement in diagnostic performance (P=.<.05 for all the comparison). CONCLUSIONS: CO-RADS, COVID-RADS, the RSNA statement and the BSTI statement provided reasonable performances and interobserver agreements in reporting CT findings of COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA